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ABSTRACT
We discuss the behavior of gas dynamic flows which are perturbations of a
uniform stream 1In terms of information transfer across artificial
(computational) boundaries remote from the source of disturbance. A set of
boundary conditions are derived involving vorticity, entropy, and pressure-

velocity relationships derived from bicharacteristic equations.
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1. TINTRODUCTION

A recurring frustration in Computational Fluid Dynamics is the apparent
difficulty of giving numerical expression to very simple statements. Typical
of this situation is the specification, in aerodynamic problems, that the flow
is uniform at large distances. The problem is caused by the fact that the
outer limit of the computational domain never is truly at infinity, because it
can always be reached by a numerical signal. Therefore, merely specifying
uniform conditions on an outer boundary results in an overconstrained problem;
signals which do reach the outer boundary are liable to be reflected from it
and may completely corrupt the interior solution.

Thére haskbeeh a loﬁé.search for effective absorbing boundary conditionmns,
but none so far has found universal acceptance, and many practical codes make
use of empirical procedures. In this note, we indicate the fallacy in three
current practices and advocate a new procedure which may be less objectionable
and can be applied to unsteady flow in any number of dimensions.

We remark that there 1is no problem when the flow is supersonic at
infinity. It is then both simple and correct to prescribe everything at
inflow and nothing at outflow. Upper and lower boundaries can be treated as
rigid walls remote enough that reflected waves do not impinge on the region of
interest. Our treatment, therefore, concentrates on the subsonic case where
the difficulties are twofold. The boundary conditions must lead to a well-
posed problem, so as to avoid the instabilities associated with overcon-
straint, and they should also be an accurate statement of the physics so that
they can be applied at fairly small distances. In the absence of rigorous
analysis (which is difficult, see [l] for a recent review), we hope that the

second property will imply the first. We derive physically correct equations



which express the passage of different kinds of information across the
boundary. 1If these are differenced so that the numerical information used is
taken from the proper domain of dependence, we assume that stability will be

assured.

2. SOME UNSOUND PRACTICES

2.1 SPECIFY FLOW DIRECTION AT INFLOW

Consider Figure 1. The proposal is to set v =0 on AB. This means
that AB cannot contribute to the circulation § u-ds around ABCD. The
circulation should be independent of the shape or distance of the integration
contour (provided the flow 1is 1inviscid and all shocks are 1inside the
contour). It is understandable, therefore, that with this method lifting
forces are usually underestimated ([2]. A cure, applicable to steady two-
dimensional aerofoil flows, is to match the direction to that found in a far-
field analytic solution whose circulation would produce the 1lift measured on
the aerofoil at each iteration. No such procedure is available for three-

dimensional or unsteady flows.

2.2 SPECIFY PRESSURE AT OUTFLOW ’

This 1is an essentially empirical procedure which often works quite
well. However, it would not be applicable in a three-dimensional flow with
shed vorticity. In steady incompressible flow, for example, we should satisfy

Bernoulli”s equation
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p + %—po(u + v2 + wz) = const., (2.1)

so that substantial values of v, w imply that p must vary.

2.3 APPLY ONE-DIMENSIONAL WAVE ANALYSIS

Assume, reasonably, that the flow near the outer boundary is a small
perturbation of the free stream. Also assume, less reasonably, that the flow
in a radial direction resembles a one-dimensional flow. Introduce a radial

coordinate r and a velocity component u, in that direction. These

assumptions together imply that

? 3 ~

(5?-+ a, s;b(p + pOaOUr) =0 (2.2a)
A -a dyp-pau)=0 (2.2b)
3t 03’ 'P T Po?oYr .

Now consider steady flow, and consider two grid points as shown in Figure

l. Connecting b to i through equation (2.2a) leads to

(pb - pi) = —poao(urb - uri)- (2.3a)

Connecting b to the free stream by (2.2b) leads to

(py, = Pyl = poao(urb - u ) (2.3b)



These two equations may be solved for py, upp,e However, they imply that

urb T Uri
— = - — . (2.4)
Py 7 Py Yro T Yrb

We expect that in the far field both p and u,. decay monotonically to
their free stream values. 1In that case both fractions in (2.4) should be
positive, but here we force them to have opposite signs. Careful examination
of the output from codes using this method reveals this non-monotone behavior
at the boundary.

The observation made in this section originates with Dr. Cedric Lytton,

of the Royal Aircraft Establishment, Farnborough, United Kingdom.

3. THE NEW PROPOSALS

3.1. SPECIFY ENTROPY AT INFLOW AND OUTFLOW

This is not of course a new proposal. It is perhaps the only widespread
current practice that is truly unobjectionable. For it to be valid, we merely
have to draw the outer boundary far enough away that no shockwaves intersect
it. Since entropy is constant along particle paths in smooth flows, we should
specify s = sg at points of inflow, and extrapolate s from the interior at

points of outflow.

3.2 SPECIFY VORTICITY AT INFLOW AND OUTFLOW
This is commonly done where vorticity is used to formulate the problem

(e.g., vorticity-streamfunction treatment of Navier-Stokes equations). The




author does not know of its use for solving the Euler equations in conserva-
tion form. It allows us to specify the tangential velocity components on the
boundary, equal to their free stream values at inflow or extrapolated from the
interior at outflow. Probably it is sufficient to make a zeroth order extra-

polation, but the convection laws of vorticity

% Vp x Vp
— + . -+ . E R s i
57 * (erPe + (@eTy 22

could be used instead.
In either case, the numerical implementation of this condition should
probably be through the expression for the integrated vorticity in a cell

dv = x n ds. (3.1)
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Then in a finite-volume analysis, say, there will be boundary cells with one
exterior face, All other faces carry fluxes determined by the interior
scheme, so that enforcing (3.1) will determine the tangential component(s) of
velocity on the exterior face. Thus we have (n - 1) boundary conditions in

n dimensions.

3.3 USE BICHARACTERISTIC ANALYSIS ON THE ACOUSTIC WAVES
(a) The Two-Dimensional Case

We seek solutions of the Euler equations at large distances, assuming an

expansion of the form



= + see
P =p,tep,

= + L 2
P =Py *ep
u = u0 + eul B P

V =€V, * o0

Insertion of these expansions into the complete equations gives

apl Bpl Bu1 avl
Tt Y Yol T =0 (3.22)
du du ap
L 1,1 1 =0 (3.2b)
5t Yokt Py pn 0K
Bv Bvl 1 3p1
ap Ip du av
1 1 2 1 1 _
-5—— + uo a + poao(r ) = 0. (302d)
These equations are partly uncoupled, 1in that ) does not appear in the

1

last three but could be found after these have been solved. From now on we
exclude the first equation. An equation holding in a characteristic plane can
be obtained by mnultiplying (3.2b) and (3.2¢c) by o Ocose Pod osine

respectively and adding them to (3.2d). The result is (we have dropped the

first-order suffixes)




3p dp ap
[Bt + (uo + aocose) 5% T 2pSind W]

Q

+ poaocose[s—tll + (u0 + aosece) gl:;] (3.3)

v v vy _
+ pOaOSine[ﬁ + uy 3+ ajcosech -3—-}7] = 0.
It is easy to check that the differential operators inside each bracket all

act in one plane, which 1is the property that qualifies (3.3) as a

characteristic equation. A revealing rearrangement, however, is the following

) 9 3
(35 + (uy + agcosd) 5 + agsing '37] {p + pjay(ucoss + vsing)}
(3.4)

+ poa(z) [sine %; - cos6 g;] (usin® - vcost).

Here the first operator acts along a particular bicharacteristic (TP in Figure
2) on the sum of pressure plus o2 times the component of velocity in the
direction 6. The second operator acts only in space, perpendicularly to
the direction 8, on the velocity component in its own direction (PQ).

Writing u,. for the velocity in direction SP, and ug for the velocity in

direction PQ, we have

[(“e)Q - (ue)P] N

tand 0.

(p +pgagudp = (P +regagu )y *rga,

Even in a steady flow, this does not reduce to equation (2.2a). To employ
such a relationship as a boundary condition, we need to choose a specific

value of 0. There are various tempting choices, but we may take a lead




from the work of Bayliss and Turkel [3]. They showed that wunder the

transformation
n =1y, =%) T=Ba0t+M0?B£ (3.5)
1
where MO = uo/a0 and B8 = (1 - Mg)/2 , the system (3.2) implies that p
obeys a regular wave equation
- - =0 .
Prr " Per T Ppp (3.6)
or, equivalently,
1 -
Pre PR "R PR T ;?'p¢¢ =0 (3.7
where
2
R2 - 52 + n2 - 52_+ y2
]
and
_n _ By
tan¢ - 'g— —){—— L) -

Now at large distances, the last term in (3.7) tends to be small. For
example, if p 1is given by the well-known separable solution

ik

p(t, R, ¢) = e cos(np)J_(kR) (3.8)

-1 -1 - -
the orders of successive terms in (3.7) are R A% R A% R 3/2, R 5/2-

Therefore, we truncate (3.7) to




=0 (3.9)

with relative error R_l. We observe that the trial solution

p=f(t - R)/Rl/2

(3.10)
which represents a decaying outgoing solution, satisfies (3.9) up to the order

of the neglected term. Also, (3.10) satisfies exactly
P

Note that this equation holds along an outgoing bicharacteristic of
(3.9). (This seems a little strange at first, but considering the analogous
analysis of the one-dimensional case in Appeudix A makes it seem natural). In
fact, (3.11) is selecting, out of all the local bicharacteristics at a point,
that one which coincides with a global bicharacteristic (see Figure 3). For
our purposes, that is the most useful bicharacteristic because along it we can
write an equation derived from global considerations.

Under the transformation inverse to (3.5), the bicharacteristics of (3.9)
must become the bicharacteristics of the system (3.2). The distinguished
bicharacteristic equation (3.11) becomes

’p , 8%a, 3p

ap 1 _ -

which is one form of the boundary condition recommended by Bayliss and Turkel

[3] to suppress incoming radiation. Here also, we take (3.12) to be the
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equation which will determine pressure on the boundary. The differential

operator in (3.12) coincides with the bicharacteristic operator in (3.3) if we

choose
2
8
sind = .
BR - Mox
Other useful forms of this result are
(MOx + BR)y
sinf = ———7—
x + y
x - BM_R M 2
cosh = 0 _ sxk - 07
BR - Mox x2 + y2

With this choice of 6, equation (3.2) can be written

82a
ap 0 ap dp
ar Py P
t+BR—MOx[x8x yay]
x - BM.R B3R a
coa Mot au PR3 au
p0 0B8R - M.x t x - BM.R 9x
0 0
bora By v, av, CRTMPA.,
00 BR - M _x L3t 0 3x 2 oy )
0 By
Combining (3.3) and (3.14) leads to
Su 3 3u 2 3v v
(x = BMGR) 55+ B°R ag 5= + B Y57 + ug 5]
P~P
v _ 0

(3.13)

(3.14)

(3.15)
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Since (3.12) and (3.14) both hold along an outgoing bicharacteristic, it
should be a stable numerical procedure to evaluate the spatial derivatives
from inside the boundary in both cases; hence in (3.15) also.

Equation (3.15) can be used to update the boundary value of the linear

combination

(x - BM R)u + 82yv. (3.16)

Since our proposal is to use vorticity to update the component of velocity
tangential to the boundary, we need to ensure that these two conditions are

independent. In other words, the boundary contour must never lie in the

direction

day _ 8%y

dx T ¥ - BUR = £(My, y/x). (3.17)

These prohibited directions are sketched in Figure 5. In the limit M0+0
these directions are radial; as MO*I they are horizontal in the left half-
plane, in the right half-plane they are tangential to circles that are
centered on the y-axis and pass through the origin. Clearly, there is little

temptation to construct any boundary curve that follows these directiouns.

(b) The Three-dimensional Case
No new ideas are 1involved here, but the procedure 1is harder to
visualize. However, we can simply repeat the formalism of the two-dimensional

case, adjoining to (3.2) the additional equation




=12~

and taking the three-dimensional divergence in (3.2d).
Then a characteristic combination is
3p

[§T+ (u0+a

ap

ap
cose)-a—x+a Ty

. ap
sinf cos¢ + ajsingsing E]

0 0

du du
+ poaocose If)_t' + (uO + aosece) 3%
av

ov v
+ pyagsing cose [é_t + u, 53 *ajcosecBsecy W]

ow aw aw
+ pgapsindsing [ﬁ + uy 5+ ajcosecdcosecy 57] .

It may be checked that all four operators act within one three-dimensional

space, which is defined by the equation

% cosf +% sinf cos +% sinfsing = u, + ajcosd. (3.19)
Visualized in the space (x/t, y/t, z/t) this is a plane surface (see
Figure 6) which touches a sphere whose radius is ag and whose center is at
(uo, 0, 0). The 1line op is the direction along which pressure is
differentiated in (3.18). It is bicharacteristic in the sense that it is the
intersection of planes having parameters (6 £ do), (¢ = do).
Again, we will select specific values of 0, ¢ by appeal to the far

field analysis. The transformation (3.5) (with g = z) produces
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P -p.-p_ ~-p. =0. (3.20)

At large distances, solutions of this equation have the form

p=f(r - R)/R (3.21)

where
2
R2=52+n2+;2=x7_+ y2+z2. (3.22)
B

These solutions obey the differential equation

p. +p, +E =0, (3.23)

T R R

As Dbefore, this can be transformed back 1into an equation along the
bicharacteristic, allowing pressure to be updated thus

2
ap + 8 a9

3t BR - Mox

] 0 9
[x F% +y 5% + z 3% +p - pO] = 0. (3.24)

The differential operator here acts along the bicharacteristic in (3.18) if we
choose as before

X - BMOR
cosf = o (3.25)

BR - Mox
and also

tanp = 2 . (3.26)

<|n
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Using these expressions, we convert (3.18) into

Bza
dp 0 op ap dp
—t+sR-Mox[x"x'+y§'§+ z 5]
X — BM.R B3R a
+p.a A U [a_ll + 0 du
pOOBR—MOx 3t X - BM R 3%
. 62y [8_v+ av (BR—MOx)aoa_v
Po?0 BR - Mx L3¢ Yo 3x a2y 3y
eo . Bz EL OR = 9920 2w _
P00 BR = Mx L3 Yo 3% 22, 3z. .

(3.27)

Now we combine the two bicharacteristic equations (3.24) and (3.27) to

obtain

B a
du 0 2a
(x = BMyR) [-a_t+x—BMR£f]
(BR - M_x)
2 v 9 0 v
+f3y[t+uO§--+_—_2____By aoa—y-]
(BR - M_x)
2 ow 9 0 ow
*“b?*“or"——?—*sz 3y 37
p_po
Po

This equation allows us to update the velocity component

(x - BM,Ru + B (yv + zw).

(3.28)
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The condition that avoids having this component parallel to the boundary is

the same as in two dimensions.

4. DISCUSSION

The intention announced in the introduction has been carried out. A set

of boundary conditions, sufficient in number to determine the flow, have been

obtained from physical considerations. In all cases, it 1is possible to

represent the conditions as finite-difference formulae involving the proper

domains of dependence. Nevertheless, there is a possible hazard associated

with expressing the inflow boundary condition 1in terms of vanishing

vorticity. Effectively this is a derivative condition which fails to

communicate what the velocity vector at infinity actually is. Although the

statement is true, it is incomplete. In fact, if the initial data for the

problem is close to uniform flow, our boundary conditions take the form of

specifying that no outside influence creates any changes. With a conservative
scheme, total wmomentum within the computational domain will change only
through boundary effects which have been allowed for. What might happen is a
slow drift away from the desired velocity, which could probably be stabilized

by prescribing a constant velocity magnitude, say, at one point.

5. ACKNOWLEDGEMENTS

I am happy to have had useful discussions on this problem with Clive

Albone at the Royal Aircraft Establishment, Farnborough, and with Eli Turkel
at ICASE.



[1]

[2]

(3]

~-16-

REFERENCES

Higdon, R. L., "Initial boundary-value problems for linear hyperbolic

systems,”" SIAM Review, Vol. 28, No. 2, June 1986, pp. 177-217.

Thomas, J., Salas, M. D., "Far field boundary conditions for transonic
lifting solutions to the Euler equations,'" AIAA J., Vol. 24, No. 7, July

1986, pp. 1074-1080.

Bayliss, A., Turkel, E., '"Far field boundary conditions for compressible

flows," J. Comput. Phys., Vol. 48, No. 2, November 1982, pp. 182-199.




-17-

APPENDIX A

The One-dimensional Case

One-dimensional acoustic flow is governed by the pair of equations

2. _
Py *Ppagu, = O

from which we may deduce the wave equation

Pee 7 20Pxx
with its general solution
p = f(x - aot) + g(x + aot).

If there are no incoming waves at large X,

satisfies

pt + aOpx = 0.

(A.l)

(A.2)

(A.3)

(A.4)

then g = 0, and P

(A.5)

This corresponds to equations (3.11) or (3.23) in the text. We also have

the characteristic equations

(%E'+ a %;)(p + pyagw

9 °
(52-— a, 5;)(p - poaou).

(A.6)

(A.7)
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At the outer boundary, we discard (A.7), which should carry no information

inward, and retain (A.6) which propagates the inner solution outward.

Combining (A.6) with (A.5) yields

[}
o

u, +agu (A.8)

so that (A.5) and (A.6) are two outgoing characteristic equations, stating
that p and u remain constant on lines dx = agdt. Thus we see that the
assumption of no incoming waves enables us to write two outgoing
characteristic equations, one for p and one for u. This is precisely what
happens in the main body of the text.

To test these ideas in one dimension, a simple code was written to solve
(A.1), (A.2) on a grid (0,1,...,N + 1), At points 1 through N, the
solution was wupdated by a first-order upwind scheme based on the
characteristic variables (p £ pOaOu). At 0, N+ 1 both p and u were
updated by first order upwind schemes using data from (0,1) or (N,N + 1). The
initial data consisted of an internal disturbance superposed on a uniform

state., The disturbance passed cleanly and stably through the boundary with no

reflections whatsoever,
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Figure 1.

Aerofoil and computational boundary



Figure 2.
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Geometry of two-dimensional
bicharacteristics

x/ At
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/—Global Bicharacteristics
Local Bicharacteristics

Line of Coincidence

Figure 3. Global and local bicharacteristics
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Figure 4. The choice of § which selects the radial bicharacteristic
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Figure 5.

The forbidden boundary directions
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Expanding sphere
of influence

x/t

2/t | /
Plane tangent to

the sphere at P

Figure 6. Geometry of three-dimensional bicharacteristics
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